Скалярное произведение векторов
Читать

Скалярное произведение векторов

Презентация на тему Скалярное произведение векторов к уроку по геометрии

Презентация по слайдам:


Слайд #1

Задача 12.19 Аналитическая геометрия

Слайд #2

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними.

Слайд #3

Числа называют скалярами. Поэтому само название «скалярное» говорит о том, что скалярное произведение двух векторов это число, которое ставится в соответствие этим векторам по определённому правилу.

Слайд #4

Векторное произведение векторов Смешанным произведением тройки векторов а, b, c называется число (оно обозначается символом (a, b, c)), для вычисления которого необходимо вначале найти векторное произведение вектора а на вектор b, а затем получившийся вектор [a, b] умножить скалярно на вектор c: (a, b, c) = ([a, b], c) c c a b b a

Слайд #5

Векторная алгебра Найти значение x Задание: а = {4, 5, 1}, b = {1, 1, -4} C = {3, -3, 1} d = {1, 2, -5} X=([a + b + c], a).

Слайд #6

Находим сумму векторов a, b, c и умножаем на вектор d: a + b + c = {8, 3, -2} d = {1, 2, -5}

Слайд #7

Векторное произведение этих векторов можно найти с помощью определителя третьего порядка: i j k -11 8 3 -2 = 38 1 2 -5 13

Слайд #8

Рассчитываем х, умножая полученное на вектор а: x = {-11, 38, 13} {4, 5, 1} = (-11 4 + 38 5 + 13 1) = = -44 + 190 + 13 = 159 X=159 Ответ: х=159 x x x