Системы уравнений (11 класс)
Читать

Системы уравнений (11 класс)

Презентация на тему Системы уравнений (11 класс) к уроку математике

Презентация по слайдам:


Слайд #1

Проект по математике На тему: Выполнила: ученица 11 класса Грибской СОШ Тафинцева Настя Руководитель: Мякинникова О.Б.

Слайд #2

Системой уравнений называется множество уравнений, решаемых совместно. Уравнение записывают одно под другим и объединяют фигурной скобкой. Порядок уравнений не играет роли. Например: х+у=39 х-у=11 называется множество пар (х;у), удовлетворяющих каждому уравнению. Обозначение. 5х+3у=7 2х+3у=1 Решением системы уравнений с 2 переменными

Слайд #3

Система уравнений вида: х + у = а ху = b. Уравнение первой степени Уравнение второй степени

Слайд #4

Пусть дана система: 4 у + х + 3у = 1 2 х – = Воспользуемся способом подстановки у 1 2 выразим из второго уравнения у.

Слайд #5

Тогда уравнение 2-й степени после подстановки дает уравнение с одним неизвестным х: 4 у + х + 3у = 1 2 х – 1 = у -4(2х-1) +х+3(2х-1)=1 2

Слайд #6

Решаем уравнение - 4(2х-1) + х + 3(2х-1)=1 2 х – 4 (2х-1) + х + 3 (2х - 1) = 1 х – 4 (4х – 4х + 1) + х +6х – 3 = 1 х – 16х + 16х - 4 + х + 6х – 3 – 1 = 0 -15х + 23х – 8 = 0; 15х – 23х + 8 = 0 2 2 2 2 2 2 2 2

Слайд #7

15 х - 23 х + 8 = 0 2 √D = √23 – 4 × 15 × 8 = √49 = 7 х = = 1 1 23 + 7 30 х = = 1/15 2 23 - 7 30

Слайд #8

После этого из уравнения у = 2х — 1 находим: у1 = 2 - 1 у2= 2 - 1 х х •1 = 1 8/15 = 1/15

Слайд #9

Таким образом, данная система имеет две пары решений: 1) x1 = 1 ,   y1 = 1;         2)  х2 = 8/15  ,  y2 =  1/15 Ответ: ( 1; 1) ;(8/15 ; 1/15)

Слайд #10

Пример: x + y = а х у = b 2 2

Слайд #11

Если b = 0, то и х = 0  и  у = 0 . Поэтому мы можем, не нарушая равносильности уравнений, разделить обе части второго из них на х: x² + ( b/x )² = a у = b/x x² + y² = а х у = b

Слайд #12

Умножив обе части на x , получим равносильное уравнение: x + b = ax , т. е.     x — ax + b = 0. 2 4 4 2 2 2 2

Слайд #13

Подобным же образом решается и система: x² — y² = а xy = b.

Слайд #14

Слайд #15

I способ (графический) Построим в одной координатной плоскости графики функций х ² + у ² = 25 х • у = 12 х ² + у ² = 25 у = 12 / х

Слайд #16

Из рисунка видно, что значения корней следующие: . х ² + у ² = 25 у = 12 / х у = 12 / х (-4;-3) (-3;-4) (3;4) (4;3)

Слайд #17

II способ (аналитический) Умножим второе уравнение на 2 и сначала сложим с первым, а затем вычтем из первого. Получим: × 2

Слайд #18

Задача сводится к системе линейных уравнений с двумя неизвестными:

Слайд #19

Применяя к полученным системам метод сложения (т.е. сперва сложим эти уравнения, а далее вычтем из первых – вторые), получим: Ответ: (4;3) ; (-3;-4) ; (3;4) ; (-4;-3)

Слайд #20

Слайд #21

I способ (графический) Построим в одной координатной плоскости графики функций и (-3;2 ) (-2 ;3) (3;2 ) (2 ;-3 )

Слайд #22

Ответ: . (2;-3); (-2;-3); (3;2); (-3;2)