По следам теоремы Пифагора
Читать

По следам теоремы Пифагора

Презентация на тему По следам теоремы Пифагора к уроку математике

Презентация по слайдам:


Слайд #1

Работа выполнена ученицей 9 класса МОУ СОШ №19 ст.Ладожской Усть-Лабинского района Селезнёвой Дарьей Андреевной Руководитель: Огнева Раиса Стефановна, учитель математики МОУ СОШ №19, Заслуженный учитель Кубани, Заслуженный учитель России, победитель конкурса «Лучший учитель России» в рамках реализации ПНПО.

Слайд #2

« Геометрия обладает двумя великими сокровищами. Первое - это теорема Пифагора, которую можно сравнить с мерой золота…» И. Кеплер

Слайд #3

Цель: внимательно изучив формулировку теоремы Пифагора, проанализировав доказательство и используя обобщение, предложить более широкий круг объектов, при помощи которых происходит доказательство теоремы Пифагора, создав тем самым новую интерпретацию её формулировки. Задачи: 1) обобщение материала по исследуемой теме. 2) применение теоремы Паппа как дополнительного инструмента проекта. 3) систематизирование информации, представленной в проекте. 4) создание новой интерпретации формулировки теоремы Пифагора.

Слайд #4

ГИПОТЕЗА Если я (в доказательстве теоремы Пифагора) на сторонах прямоугольного треугольника построю не квадраты (как предложил Пифагор), а подобные многоугольники, то будет ли справедливо, что площадь многоугольника, построенного на гипотенузе, равна сумме площадей многоугольников, построенных на катетах? Если я это докажу, то у меня появится новая интерпретация формулировки теоремы Пифагора, что обогатит задачный материал, а главное, будет иметь интересное обобщение.

Слайд #5

Теорема Паппа Если на сторонах произвольного треугольника АВС построить параллелограммы соответствующим образом, то площадь параллелограмма, построенного на большей стороне, равна сумме площадей двух остальных.

Слайд #6

Проверка гипотезы

Слайд #7

На сторонах прямоугольного треугольника построим равносторонние треугольники. Достроив их до параллелограммов и применив теорему Паппа, имеем:

Слайд #8

На сторонах прямоугольного треугольника построим равнобедренные подобные треугольники. Достроив их до параллелограммов и применив теорему Паппа, имеем: (как построенные на сходственных сторонах)

Слайд #9

На сторонах прямоугольного треугольника построим разносторонние подобные треугольники с коэффициентами подобия соответственно (это коэффициенты подобных треугольников, на которые делит высота, опущенная из вершины прямого угла треугольника). Достроив их до параллелограммов и применив теорему Паппа, получим, что площадь треугольника, построенного на гипотенузе, равна сумме площадей треугольников, построенных на катетах. SABKP = SAQMC + SBCEN SABKP= SAQMC + SBCEN S1 = S2 + S3

Слайд #10

Если на сторонах прямоугольного треугольника, как на сходственных, построить подобные многоугольники, то площадь многоугольника, построенного на гипотенузе, равна сумме площадей многоугольников, построенных на катетах.