Геометрия 11 класс
Читать

Геометрия 11 класс

Презентация на тему Геометрия 11 класс к уроку по геометрии

Презентация по слайдам:


Слайд #1

Геометрия 11 класс Корниенко Татьяна Федоровна

Слайд #2

Если в одной из 2 параллельных плоскостей взять окружность, и из каждой ее точки восстановить перпендикуляр до пересечения со второй плоскостью, то получится тело, ограниченное двумя кругами и поверхностью, образованной из перпендикуляров, это тело называется цилиндром. 1.Как можно получить цилиндр Круги, лежащие в параллельных плоскостях, называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей оснований –называются образующими цилиндра.

Слайд #3

А можно так получить цилиндр Вращением прямоугольника вокруг одной из его сторон

Слайд #4

2.Понятие цилиндрической поверхности 1 2 3 4 1. Основание цилиндра 2. Образующие 3.Ось цилиндра 4. Радиус основания 4 Радиусом цилиндра называется радиус его основания.

Слайд #5

Образующая цилиндра при вращении вокруг своей оси образует боковую (цилиндрическую) поверхность цилиндра. 1 2 3 4 4 2. Образующие Поверхность, состоящая из образующих, называется боковой поверхностью цилиндра.

Слайд #6

Если сечение проходит через ось цилиндра, то оно имеет форму прямоугольника и называется «осевым» Сечение плоскостью, перпендикулярной к оси или параллельное основаниям, является кругом. β α β о о1 γ 3.Сечения цилиндра Сечение , параллельное оси цилиндра-прямоугольник

Слайд #7

5.Касательная плоскость цилиндра Касательной плоскостью к цилиндру называется плоскость проходящая через образующую цилиндра и перпендикулярная плоскости осевого сечения, содержащей эту образующую

Слайд #8

Разверткой боковой поверхности цилиндра является прямоугольник со сторонами Н и С, где Н – высота цилиндра, а С – длина окружности основания. н С=2πR S=πR² S=πR²

Слайд #9

6.Плошадь поверхности цилиндра S(полн.поверхн.)=2πR(R+h) S(бок.поверхн.)= 2πRh Sосн=πR² н С=2πR S=πR² S=πR² S(полн.поверхн.)=2πR²+2πRh

Слайд #10

Конус Пусть прямоугольный треугольник вращается вокруг одного из катетов, тогда второй катет описывает окружность. Полученная при вращении фигура называется конусом. 3. Гипотенуза данного треугольника-образующая конуса 4.Катет, вокруг которого вращается треугольник – ось конуса, Второй катет- радиус описываемой окружности основания

Слайд #11

Конус и его развертка L H R L-образующая H-высота R-радиус основания L R Sбок=πRL S=πR² Нахождение Sбок Sполн=πRL+πR²= =πR(R+L)

Слайд #12

Осевое сечение конуса-равнобедренный треугольник Сечение конуса, перпендикулярное оси конуса имеет форму круга

Слайд #13

Усеченным конусом называется часть полного конуса, заключенная между основанием и секущей плоскостью,параллельной основанию. Круги, лежащие в параллельных плоскостях, называются основаниями усеченного конуса. Осевое сечение ус. конуса- -равнобедренная трапеция S

Слайд #14

Образующей усеченного конуса называется часть образующей полного конуса, заключенная между основаниями. Высотой усеченного конуса называется расстояние между основаниями. ℓ h R r Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.

Слайд #15

Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки.

Слайд #16

о о м м с О(0;0;0) M(x;y;z)

Слайд #17

d>R d=R d

Слайд #18

О А α Плоскость , имеющая со сферой одну общую точку, называется касательной к сфере Радиус сферы, проведенный к точке касания сферы и плоскости перпендикулярен к касательной плоскости. ОА┴α А′ ОА=R, если ОА┴α, то любая другая ОА′- наклонная, а любая наклонная больше , чем ОА, т.е. условие не выполняется( ОА′>R) Обратная теорема : Если ОА┴α, α-касательная плоскость Т.к. перпендикуляр и плоскость имеют одну общую точку, то α- касательная плоскость

Слайд #19

Шаровым слоем называется часть шара, заключенная между двумя параллельными секущими плоскостями.

Слайд #20

Шаровым сегментом называется часть шара, отсекаемая от него какой - нибудь плоскостью.

Слайд #21

Шаровым сектором называется тело, полученное вращением кругового сектора с углом, меньшим 900, вокруг прямой, содержащей один из ограничивающих круговой сектор радиусов.