Задачи по комбинаторике
Презентация на тему Задачи по комбинаторике к уроку математике
Презентация по слайдам:
Слайд #1
выполнила ученица 5а класса Пятакова Дарья
Слайд #2
Человеку часто приходится иметь дело с задачами, в которых нужно подсчитать число всех возможных способов расположения некоторых предметов или число всех возможных способов осуществления некоторого действия. Разные пути или варианты, которые приходится выбирать человеку, складываются в самые разнообразные комбинации.
Слайд #3
Актуальность и значимость Комбинаторные задачи развивают нестандартное мышление, воображение, смекалку. Задачи по комбинаторике включены на всех этапах математической олимпиады.
Слайд #4
проблема цель задачи методы
Слайд #5
Проблема Отсутствие возможности хорошо подготовиться к конкурсам и к олимпиаде. (Недостаток времени , беден задачный материал )
Слайд #6
Цель работы: выяснить, что значит решить комбинаторную задачу, т.е. познакомиться с методами решения задач из комбинаторики.
Слайд #7
Задачи исследования: Рассмотреть методы решения некоторых комбинаторных задач; Создать задачник по комбинаторике для 5-6 классов; Расширить знания по теме «Комбинаторные задачи»; Научиться собирать информацию, выделять главное, делать выводы.
Слайд #8
Объект исследования: область математики – комбинаторика. Методы исследования: Классификация Систематизация Сравнение Анализ математической литературы
Слайд #9
Результат Создание сборника задач
Слайд #10
Задача: На столе лежат 3 черных и 5 красных карандашей. Сколькими способами можно выбрать карандаш любого цвета? Решение: Выбрать карандаш любого цвета можно 5+3=8 способами.
Слайд #11
Задача: В классе 10 учащихся занимаются спортом, остальные 6 учащихся посещают танцевальный кружок. 1)Сколько пар учащихся можно выбрать так, чтобы один из пары был спортсменом, другой танцором? 2)Сколько возможностей выбора одного ученика? Решение: 1)Возможность выбора спортсменов 10, а на каждого из 10 спортсменов выборов танцора 6. Значит, возможность выбора пар танцора и спортсмена 10·6=60. 2) Возможность выбора одного ученика 10+6=16.
Слайд #12
Задача : Из города А в город В ведут 3 дороги. А из города В в город С ведут 4 дороги. Сколько путей, проходящих через В, ведут из А в С? Решение: Можно рассуждать таким образом: для каждой из трех путей из А в В имеется четыре способа выбора дороги из В в С. Всего различных путей из А в С равно произведению 3·4, т.е. 12
Слайд #13
Задача: В школьной столовой имеются 2 первых, 5 вторых и 4 третьих блюд. Сколькими способами ученик может выбрать обед, состоящий из первых, вторых и третьих Решение: Первое блюдо можно выбрать 2 способами. Для каждого выбора первого блюда существует 5 вторых блюд. Первые два блюда можно выбрать 2·5=10 способами. И, наконец, для каждой 10 этих выборов имеются четыре возможности выбора третьего блюда, т. е. Существует 2·5·4 способов составления обеда из трех блюд. Итак, обед может быть составлен 40 способами.
Слайд #14
Проказница Мартышка, Осёл, Козёл, Да косолапый Квартет Мишка Затеяли играть в квартет … Стой, братцы стой! – Кричит Мартышка, - погодите! Как музыке идти? Ведь вы не так сидите… И так, и этак пересаживались – опять музыка на лад не идет. Вот пуще прежнего пошли у них разборы И споры, Кому и как сидеть…
Слайд #15
Вероятно, крыловские музыканты так и не перепробовали всех возможных мест. Однако способов не так уж и много. Сколько? Решение: 4!=24 варианта перестановок.
Слайд #16
Сколько двузначных чисел можно составить, используя цифры 1,4,7. Первая цифра Вторая цифра Можно составить 9 различных двузначных чисел. Эта задача решена с помощью дерева возможных вариантов. 1 4 7 1 4 7 1 4 7 1 4 7
Слайд #17
Вывод: Научилась решать задачи по комбинаторике; Подобрала задачи по данной теме и создала задачник; Приобрела умения работать с компьютером.
Слайд #18
Я считаю, что работа достигла своих целей. Создала сборник задач по комбинаторике Этот сборник заинтересует учащихся, поможет развитию их кругозора и мышления, будет способствовать более качественной подготовке к конкурсам и к олимпиадам. Может быть использована на уроках, кружках, индивидуальных занятиях .
Слайд #19