Поговорим о многогранниках
Читать

Поговорим о многогранниках

Презентация на тему Поговорим о многогранниках к уроку по геометрии

Презентация по слайдам:


Слайд #1

Поговорим о многогранниках Выполнила Малашина Ольга Владимировна, учитель математики МОУ СОШ с. Липовка

Слайд #2

Ни одни геометрические тела не обладают таким совершенством и красотой , как правильные многогранники. "Правильных многогранников вызывающе мало, -написал когда-то Л.Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

Слайд #3

Слайд #4

Правильные многогранники Еще в древней Греции были известны пять удивительных многогранников.

Слайд #5

Их изучали ученые, ювелиры, священники, архитекторы. Этим многогранникам даже приписывали магические свойства. Древнегреческий ученый и философ Платон (IV–V в до н. э.) считал, что эти тела олицетворяют сущность природы. В своем диалоге «Тимей» Платон говорит, что атом огня имеет вид тетраэдра, земли – гексаэдра (куба), воздуха – октаэдра, воды – икосаэдра. В этом соответствии не нашлось места только додекаэдру и Платон предположил существование еще одной, пятой сущности – эфира, атомы которого как раз и имеют форму додекаэдра. Ученики Платона продолжили его дело в изучении перечисленных тел. Поэтому эти многогранники называют платоновыми телами

Слайд #6

Слайд #7

Правильные многогранники

Слайд #8

Тетраэдр Тетраэдр (tetra – четыре, hedra – грань). Правильный тетраэдр – правильный четырехгранник, то есть тетраэдр с равными ребрами, представляет собой правильный многогранник, все грани которого – правильные треугольники и из каждой вершины которого выходит ровно три ребра. Очевидно, что тетраэдр с заданной длиной ребра единственен. Все остальные тетраэдры подобны ему и определяются длиной ребра/

Слайд #9

Гексаэдр Гексаэдр (куб, hexa – шесть). Гексаэдр – правильный многогранник, все грани которого – квадраты, и из каждой вершины выходит три ребра.

Слайд #10

Октаэдр Октаэдр (okto – восемь). Это правильный многогранник, все грани которого – правильные треугольники и к каждой вершине прилегают четыре грани

Слайд #11

Додекаэдр Существует правильный многогранник, у которого все грани правильные пятиугольники и из каждой вершины выходит 3 ребра. Этот многогранник имеет 12 граней, 30 ребер и 20 вершин и называется додекаэдром (dodeka – двенадцать).

Слайд #12

Икосаэдр Существует правильный многогранник, у которого все грани – правильные треугольники, и из каждой вершины выходит 5 ребер. Этот многогранник имеет 20 граней, 30 ребер, 12 вершин и называется икосаэдром (icosi – двадцать).

Слайд #13

Полуправильные многогранники

Слайд #14

Определение: Полуправильным называется выпуклый многогранник, гранями которого являются правильные многоугольники (возможно с разным числом сторон), причем в каждой вершине сходится одинаковое число граней.

Слайд #15

Тела Архимеда

Слайд #16

Правильная шестиугольная призма Шестиугольная антипризма

Слайд #17

Усеченный тетраэдр Усеченный икосаэдр Икосододекаэдр Усеченный икосододекаэдр

Слайд #18

кубооктаэдр усеченный куб плосконосый куб ромбокубооктаэдр

Слайд #19

Кубооктаэдр Этот полуправильный многогранник получается, если провести в кубе отсекающие плоскости через середины ребер, выходящих из одной вершины. Его гранями являются шесть квадратов, как у куба, и восемь правильных треугольников, как у октаэдра. Отсюда и его название.

Слайд #20

Усеченный куб Если указанным способом срезать вершины куба, то получится полуправильный многогранник, который и называется усеченным кубом

Слайд #21

ромбоикосододекаэдр плосконосый додекаэдр

Слайд #22

Звездчатые многогранники

Слайд #23

Тела Кеплера- Пуансо Кроме правильных и полуправильных многогранников красивые формы имеют так называемые звездчатые многогранники. Правильных звездчатых многогранников всего четыре. Первые два открыты И. Кеплером, а два других почти 200 лет спустя построил Л. Пуансо.

Слайд #24

Малый звездчатый додекаэдр Большой звездчатый додекаэдр

Слайд #25

Примечание: Из тетраэдра, куба и октаэдра звездчатые многогранники не получаются. Из додекаэдра получается три. Икосаэдр имеет одну звездчатую форму – большой икосаэдр.

Слайд #26

Это интересно Звездчатые многогранники очень декоративны, что позволяет широко применять их при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки – это звездчатые многогранники.

Слайд #27

Математика владеет не только истиной, но и высшей красотой-красотой отточенной и строгой, возвышенно чистой и стремящейся к подлинному совершенству, которое свойственно лишь величайшим образцам искусства. Бертран Рассел