Вычисление углов между прямыми и плоскостями
Читать

Вычисление углов между прямыми и плоскостями

Презентация на тему Вычисление углов между прямыми и плоскостями к уроку по Алгебре

Презентация по слайдам:


Слайд #1

11 класс.

Слайд #2

Цели урока: Показать, как используется скалярное произведение векторов при решении задач на вычисление углов между двумя прямыми, между прямой и плоскостью.

Слайд #3

Повторяем теорию: Как находят координаты вектора, если известны координаты его начала и конца? Как находят координаты середины отрезка? Как находят длину вектора? Как находят расстояние между точками? Как вы понимаете выражение «угол между векторами»?

Слайд #4

Повторяем теорию: Какие векторы называются перпендикулярными? Что называется скалярным произведением векторов? Чему равно скалярное произведение перпендикулярных векторов? Чему равен скалярный квадрат вектора? Свойства скалярного произведения? 0 Скалярный квадрат вектора равен квадрату его длины.

Слайд #5

Направляющий вектор прямой. Ненулевой вектор называется направляющим вектором прямой, если он лежит на самой прямой, либо на прямой, параллельной ей. а В А

Слайд #6

Визуальный разбор задач из учебника (п.48). №1. Найти угол между двумя прямыми (пересекающимися или скрещивающимися), если известны координаты направляющих векторов этих прямых. а) б) θ θ φ = θ φ = 1800 - θ

Слайд #7

Визуальный разбор задач из учебника (п.48). №2. Найти угол между прямой и плоскостью, если известны координаты направляющего вектора прямой и координаты ненулевого вектора, перпендикулярного к плоскости.. а) б) α а φ θ α а φ φ θ

Слайд #8

№ 464 (а) Дано: Найти: угол между прямыми АВ и CD. Ваши предложения… Найдем координаты векторов и 2. Воспользуемся формулой: φ = 300

Слайд #9

№ 466 (а) Дано: куб АВСDA1B1C1D1 точка М принадлежит АА1 АМ : МА1 = 3 : 1; N – середина ВС Вычислить косинус угла между прям. MN и DD1 1. Введем систему координат. х у z 2. Рассмотрим DD1 и МN. М N 3. Пусть АА1= 4, тогда 4. Найдем координаты векторов DD1 и MN. 5. По формуле найдем cosφ. Ответ:

Слайд #10

Задача. Дано: прямоугольный параллелепипед АВСDA1B1C1D1; DA = 2; DC = 2; DD1 = 3. 1 2 3 Найти угол между прямыми СВ1 и D1B. х у z Ваши предложения… 1. Введем систему координат Dxyz 2. Рассмотрим направляющие прямых D1B и CB1. 3. По формуле найдем cosφ.

Слайд #11

Дано: прямоугольный параллелепипед АВСDA1B1C1D1; АВ = ВС = ½ АА1 Найти угол между прямыми ВD и CD1. 1 способ: 1. Введем систему координат Bxyz х у z 2. Пусть АА1= 2, тогда АВ = ВС = 1. 3. Координаты векторов: 4. Находим косинус угла между прямыми:

Слайд #12

х у z Дано: прямоугольный параллелепипед АВСDA1B1C1D1; АВ = ВС = ½ АА1 Найти угол между прямыми ВD и CD1. 2 способ: 1. Т.к. СD1|| ВА1, то углы между ВD и ВА1; ВD и СD1 – равны. 2. В ΔВDА1: ВА1 = √5, А1D = √5 3. ΔВDА: по теореме Пифагора 4. По теореме косинусов: