Решение задач с помощью квадратных уравнений
Читать

Решение задач с помощью квадратных уравнений

Презентация на тему Решение задач с помощью квадратных уравнений к уроку по Алгебре

Презентация по слайдам:


Слайд #1

Квадратные уравнения. презентация

Слайд #2

Тема урока Решение задач с помощью квадратных уравнений.

Слайд #3

Цель урока Продолжить формирование навыка решений квадратных уравнений по формуле. Совершенствовать навык составления уравнения по условию задачи, умение проверять соответствие найденного решения условиям задачи.

Слайд #4

Уравнения вида ax2+bx+c=0, где a≠0 называют квадратным уравнением. Если а=1, то уравнение называют приведенным квадратным уравнением.

Слайд #5

В Греции математики овладели искусством решать квадратные уравнения путем использования геометрической алгебры. Примеры геометрического решения квадратных уравнений приводятся в знаменитой «Алгебре Мухаммеда аль-Хорезми»

Слайд #6

Решим уравнение x2+10x=39 Построим квадрат ABCD со стороной х см и на его сторонах ВС и СD равные прямоугольники с высотой 5 см. M K F В С L А D N

Слайд #7

SAMFN=SABCD+2SCDNL+SCKFL=x2+2x*5+25 SAMFN=(x+5)2 (x+5)2=x2+10x+25 т.к. x2+10x=39 (x+5)2=39+25 (x+5)2=64 х+5=8 х+5= -8 Х=3 х = -13 А В С D М F N K L

Слайд #8

Впервые отрицательные корни уравнений стал находить индийский математик Бхаскара ХII в., книга которого «Лилавати» являлась главным источником математических знаний на Востоке

Слайд #9

В Европе решение квадратных уравнений было изложено итальянским ученым Леонардо Фибоначчи в «Книге абака» (начало ХIII в.). В середине XVI в. в общее правило решения квадратных уравнений при любых знаках коэффициентов было дано немецким математиком М. Штифелем

Слайд #10

Решение квадратных уравнений по формуле.

Слайд #11

Решение квадратного уравнения по формуле

Слайд #12

Реши уравнения и выбери правильный ответ

Слайд #13

Ответы 1 2 3 б г в

Слайд #14

№ 1

Слайд #15

Из города А в город В, расстояние между которыми 120 км, выехали одновременно два велосипедиста. Скорость первого на 3 км/ч больше скорости второго, поэтому он прибыл в город В на 2 ч раньше. Определите скорость велосипедистов. Условие А В 120 км

Слайд #16

Решение Пусть х км/ч – скорость второго велосипедиста Известно, что второй велосипедист прибыл в город В раньше на 2 ч, чем первый. А В 120 км S,км ,км/ч t, ч 1 велосипедист 120 х+3 2 велосипедист 120 х

Слайд #17

Решение Составим и решим уравнение: Умножим обе части этого уравнения на x(x+3) Ответ: 12 км/ч; 15 км/ч. Число -15 противоречит смыслу задачи Если х=12, то х(х+3)≠0, верно 12 км/ч – скорость второго велосипедиста 15 км/ч – скорость первого велосипедиста

Слайд #18

Реши самостоятельно

Слайд #19

Из пунктов А и В навстречу друг другу одновременно вышли два пешехода. Скорость первого на 1 км/ч больше скорости второго, поэтому он прибыл в пункт В на 1 ч раньше, чем второй в пункт А. Найдите скорости пешеходов, если расстояние между пунктами А и В равно 20 км. Условие А В

Слайд #20

Решение По условию задачи время движения первого пешехода на 1 ч меньше времени движения второго. А В S,км ,км/ч t, ч 1 пешеход 20 х+1 2 пешеход 20 х

Слайд #21

Решение Составим и решим уравнение: Число -5 противоречит смыслу задачи Если х=4, то х(х+1)≠0, верно 4 км/ч – скорость второго пешехода 5 км/ч – скорость первого пешехода Ответ: 5 км/ч; 4 км/ч.

Слайд #22

№ 2

Слайд #23

Катер, собственная скорость которого 8 км/ч, прошёл по реке расстояние, равное 15 км, по течению и такое же расстояние против течения. Найдите скорость течения реки, если время, затраченное на весь путь, равно 4 ч. Условие

Слайд #24

Решение Известно, что время, затраченное на весь путь, равно 4 ч. Пусть х км/ч – скорость течения реки. S,км ,км/ч t, ч Против течения 15 8-х По течению 15 8+х

Слайд #25

Решение Составим и решим уравнение: Число -2 противоречит смыслу задачи Если х=2, то (8-х)(8+х)≠0, верно 2 км/ч – скорость течения реки Ответ: 2 км/ч.

Слайд #26

Реши самостоятельно

Слайд #27

Расстояние между пристанями по реке равно 21 км. Моторная лодка отправилась от одной к другой и через 4 ч вернулась назад, затратив 24 мин. на стоянку. Найти собственную скорость лодки, если скорость течения реки равна 2 км/ч. Условие

Слайд #28

Решение По условию задачи время, затраченное моторной лодкой на весь путь по реке, равно Пусть х км/ч – собственная скорость моторной лодки. S,км ,км/ч t, ч Против течения 21 х-2 По течению 21 х+2

Слайд #29

Решение Составим и решим уравнение: Число противоречит смыслу задачи Если х=12, то (х-2)(х+2)≠0, верно 12 км/ч – собственная скорость моторной лодки Ответ: 12 км/ч.