развертки координат
Презентация на тему развертки координат к уроку по геометрии
Презентация по слайдам:
Слайд #1
Лекция 7а Развертки поверхностей
Слайд #2
Основные положения Развертыванием называется такое преобразование, при котором все точки поверхности совмещаются с плоскостью. Развертка - плоская фигура, получаемая в результате данного преобразования. Поверхности делятся на развертываемые и неразвертываемые. Развертываемые совмещаются с плоскостью без разрывов и складок Для неразвертываемых строятся условные развертки
Слайд #3
Развертки прямых круговых конуса и цилиндра Н d Н d Для данных поверхностей строятся точные развертки. Боковая поверхность цилиндра – прямоугольник. Боковая поверхность конуса – круговой сектор d R R
Слайд #4
Способ нормального сечения Определяются натуральные величины образующих, если они заданы в общем положении. Строится нормальное сечение (там, где образующие имеют истинную величину) Определяется натуральная величина нормального сечения Строится развертка: периметр нормального сечение «развертывается» в прямую; через его вершины перпендикулярно линии проводятся образующие Применяется для призматических и цилиндрических поверхностей. Нормальное сечение перпендикулярно образующим и определяет расстояние между ними
Слайд #5
a2 b2 c2 А2 Боковые ребра призмы обозначены a, b и c. На П2 эти ребра имеют натуральную величину (являются фронталями). Поэтому след нормаль-ного сечения можно провести на исходном чертеже без его преобра-зования перпендикулярно проекциям - натуральным величинам ребер. c1 b1 a1
Слайд #6
А2 На П2 проводим след плоскости Р2 перпендикулярно проекциям ребер - натуральным величинам. Для построения нормального сечения фикси- руем точки пересечения следа Р2 с проекциями ребер призмы как 12, 22 и 32. Проекции 11, 21, 31 располагаем на a1, b1, c1 соответственно. b1 a1 c1 a2 b2 c2 P2 12 22 32 11 31 21
Слайд #7
P2 12 22 32 А2 Для построения развертки призмы необходима натуральная величина нормального сечения, которой нет на исходном чертеже. Применив способ плоско-параллельного перемещения, найдем проекцию треугольника - натуральную величину 11 21 31 . c1 b1 a1 a2 b2 c2 11 31 21 н.в.
Слайд #8
c1 b1 a1 P2 12 22 32 11 31 21 А2 Развертку начинаем строить, развернув натуральное нормальное сече- ние в прямую линию с обозначением узловых точек 10, 20, 30 и еще раз 10. Через узловые точки проводим натуральные ребра призмы перпендику- лярно линии нормального сечения, перенеся равные отрезки ребер с П2. н.в. a2 b2 c2 32 22 12 31 11 21
Слайд #9
c1 b1 a1 P2 12 22 32 11 31 21 А2 Достраиваем натуральные основания призмы способом засечек и получаем ее полную развертку. н.в. a2 b2 c2 10 20 30 10 32 22 12 31 11 21
Слайд #10
c1 b1 a1 P2 12 22 32 11 31 21 А2 Точку А, заданную на поверхности, легко построить на развертке. Для этого на нужной грани через точку А проводим дополнительную прямую и, определив ее место на натуральной величине нормального сечения, находим расположение этой прямой вместе с точкой А0 на развертке. н.в. a2 b2 c2 10 20 30 10 А0 32 22 12 31 11 21