Решение краевых задач ОДУ
Читать

Решение краевых задач ОДУ

Презентация на тему Решение краевых задач ОДУ к уроку по информатике

Презентация по слайдам:


Слайд #1

Решение краевых задач ОДУ Паросова Ольга ГИП-109

Слайд #2

История дифферинциальных исчислений 17 в. И. Ньютон и Г. Лейбниц, братья Я. и И. Бернулли, Б. Тейлор 18 в. Л. Эйлер и Ж. Лагранж 19 в. Коши, Б. Больцан и К. Гаус

Слайд #3

Основные понятия Дифференциальным уравнением называется уравнение, связывающее не зависимую переменную неизвестную функцию x(t) этой независимой пере меной и ее производные Краевые задачи, задачи, в которых из некоторого класса функций, определённых в данной области, требуется найти ту, которая удовлетворяет на границе (крае) этой области заданным условиям

Слайд #4

Золотое сечение Метод золотого сечения — метод поиска значений действительно - значной функции на заданном отрезке. В основе метода лежит принцип деления в пропорциях золотого сечения. Наиболее широко известен как метод поиска экстремума в решении задач оптимизации.

Слайд #5

Формализация Шаг 1. Задаются начальные границы отрезка и точность ε, рассчитывают начальные точки деления: Шаг 2. Если то Иначе Шаг 3. Если , то и останов. Иначе возврат к шагу 2.

Слайд #6

Программа

Слайд #7

Градиентный метод Градиентный спуск — метод нахождения локального минимума (максимума) функции с помощью движения вдоль градиента. Для минимизации функции в направлении градиента используются методы одномерной оптимизации, например, метод золотого сечения

Слайд #8

Алгоритм 1.Задают начальное приближение и точность расчёта 2.Рассчитывают , где 3.Проверяют условие остановки: Если , то и переход к шагу 2. Иначе и останов. , ,

Слайд #9

Программа

Слайд #10

Спасибо за внимание