Математика и живопись
Читать

Математика и живопись

Презентация на тему Математика и живопись к уроку математике

Презентация по слайдам:


Слайд #1

Математика и живопись «Геометрия владеет двумя сокровищами: одно из них – теорема Пифагора, другое - деление отрезка в среднем и крайнем отношении.» И. Кеплер Работа ученика 10 кл Сивожелезова Михаила МОУ СОШ №7 г. Соль-Илецка Оренбургской области

Слайд #2

Золотое сечение – гармоническая пропорция В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b= c : d. Отрезок прямой АВ можно разделить на две части следующими способами: - на две равные части – АВ : АС= АВ : ВС; - на две неравные части в любом отношении (такие части пропорции не образуют); таким образом, когда АВ : АС= АС : ВС. Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении. Золотое сечение – это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему a : b= b : c или с : b= b : а.

Слайд #3

И.И. Шишкин. Корабельная роща

Слайд #4

«Явление Христа народу» Александра Иванова. Явственный эффект приближение Мессии к людям возникает из-за того, что он уже прошел точку золотого сечения (перекрестье оранжевых линий) и сейчас входит в ту точку, которую мы будем называть точкой серебряного сечения (это отрезок, деленный на число π, или отрезок минус отрезок, деленный на число π). .

Слайд #5

Многофигурная композиция, выполненная в 1509 - 1510 годах Рафаэлем, когда прославленный живописец создавал свои фрески в Ватикане, отличается динамизмом и драматизмом сюжета. Рафаэль так и не довел свой замысел до завершения, однако, его эскиз был гравирован неизвестным итальянским графиком Маркантинио Раймонди, который на основе этого эскиза и создал гравюру « Избиение младенцев», в которая содержит золотое сечение. Избиение младенцев

Слайд #6

Рафаэль не был ученым-математиком, но, подобно многим художникам той эпохи, обладал немалыми познаниями в геометрии. В знаменитой фреске “Афинская школа”, где в храме науки предстоит общество великих философов древности, наше внимание привлекает группа Эвклида - крупнейшего древнегреческого математика, разбирающего сложный чертеж. Хитроумная комбинация двух треугольников также построена в соответствии с пропорцией золотого сечения: она может быть вписана в прямоугольник с соотношением сторон 5/8. Этот чертеж удивительно легко вставляется в верхний участок архитектуры. Верхний угол треугольника упирается в замковый камень арки на ближнем к зрителю участке, нижний - в точку схода перспектив, а боковой участок обозначает пропорции пространственного разрыва между двумя частями арок

Слайд #7

Нет живописи более поэтичней, чем живопись Боттичелли Сандро, и нет у великого Сандро картины более знаменитой, чем его “Венера”. Для Боттичелли его Венера – это воплощение идеи универсальной гармонии “золотого сечения”, господствующего в природе. Рождение Венеры

Слайд #8

Тайная вечеря “Тайная вечеря” — самое зрелое и законченное произведение Леонардо. В этой росписи мастер избегает всего того, что могло бы затемнить основной ход изображенного им действия, он добивается редкой убедительности композиционного решения.

Слайд #9

Березовая роща   А теперь взглянем на зримо геометризированную «Березовую рощу» Архипа Куинджи, написанную в 1879 г. после парижского знакомства художника с импрессионистами. Акцентные точки приходятся не только на два из четырех золотых пересечения (комли двух центральных берез), но и на √2 (желтая сетка – по нижней горизонтали граница тени и комли еще четырех деревьев, а по вертикали ствол одной из берез) и две горизонтали √5 (выделены красным – по горизонтали дальний край поляны и высота дальних деревьев, по вертикали граница крон левой группы деревьев).