Определение призмы, пирамиды
Читать

Определение призмы, пирамиды

Презентация на тему Определение призмы, пирамиды к уроку по геометрии

Презентация по слайдам:


Слайд #1

Определение призмы, пирамиды. Геометрия, 10 класс. Воробьев Леонид Альбертович, г.Минск

Слайд #2

Пусть даны две параллельные плоскости и β. Построим в плоскости произвольный n-угольник A1A2…An. A1 A2 A3 An An-1 β B1 B2 B3 Bn Bn-1 Через его вершины проведем параллельные прямые, пересекающие плоскость β в соответствующих точках В1,В2,…,Вn. Соединив последовательно полученные точки получим n-угольник B1B2…Bn. Многогранник, образованный двумя равными многоугольниками, лежащими в параллельных плоскостях и n параллелограммами является n-угольной призмой. Обозначается призма перечислением всех точек, участвующих в ее построении , в нашем случае: A1A2…An B1B2…Bn.

Слайд #3

A1 A2 A3 B1 B2 B3 Bn Bn-1 Многоугольники A1A2…An и В1В2…Вn называются основаниями призмы (или верхней и нижней гранями n-угольной призмы). Параллелограммы A1B1BnAn, A1B1B2A2 , …,AnBnBn-1An-1 – боковые грани призмы. Параллельные и равные между собой отрезки A1B1, A2B2,…,AnBn – боковые ребра призмы. Можно установить, что для любой n-угольной призмы: количество вершин – 2n; (В) количество граней – (n+2); (Г) количество ребер – 3n; (Р) и поэтому, как для любого многогранника, для n-угольной призмы выполняется формула Эйлера: В+Г–Р=2. An An-1 H O Отрезок AnO (B1B2B3) – высота призмы.

Слайд #4

Название призмы определяется количеством сторон в основании фигуры. Например, на рисунке представлены треугольная (а), четырехугольная (б), пятиугольная (в), шестиугольная (г) и семиугольная (д) призмы: а) б) в) г) д)

Слайд #5

Призма называется прямой, если боковое ребро перпендикулярно плоскости основания (AnBn (A1A2A3)). Очевидно, что в этом случае боковые грани призмы – прямоугольники. Отрезки, соединяющие точки верхнего и нижнего оснований, не лежащие в одной боковой грани, называются диагоналями призмы. Задание: сколько диагоналей в n-угольной призме? A1 A2 A3 An-1 B1 B2 B3 Bn Bn-1 Ответ: n(n–3). Сечения призмы, образованные диагональю призмы и боковым ребром, называются диагональными сечениями призмы. В наклонной призме – это параллелограммы, в прямой призме – прямоугольники. An

Слайд #6

Призма называется правильной, если: 1) она прямая; и 2) её основания – правильные многоугольники. На рисунке представлены правильные а) треугольная; б) четырехугольная; в) шестиугольная призмы.

Слайд #7

Слайд #8

Слайд #9

Слайд #10

A1 A2 A3 An An-1 Построим в плоскости произвольный n-угольник A1A2…An. Выберем произвольную точку S, не принадлежащую плоскости . S Соединим точку S со всеми вершинами n-угольника A1A2…An. Многогранник, образованный многоугольником и n треугольниками с общей вершиной вне плоскости многоугольника, является n-угольной пирамидой. Обозначается пирамида перечислением всех точек, участвующих в ее построении , в нашем случае: SA1A2…An . Точка S называется вершиной пирамиды.

Слайд #11

A1 A2 A3 An An-1 S Многоугольник A1A2…An называется основанием пирамиды . Треугольники S A1A2, S A2A3 , …, S An-1An – боковые грани пирамиды. Отрезки SA1, SA2,…, SAn – боковые ребра пирамиды. Можно установить, что для любой n-угольной пирамиды: количество вершин – (n+1); (В) количество граней – (n+1); (Г) количество ребер – 2n; (Р) и поэтому, как для любого многогранника, для n-угольной пирамиды выполняется формула Эйлера: В+Г–Р=2. H O Отрезок SO (A1A2A3) – высота пирамиды.

Слайд #12

A B N O M S H R l r C

Слайд #13

A C D O M S H R l r

Слайд #14

A B C D O M S H R l r