Геометрия 7 класс Основные темы
Презентация на тему Геометрия 7 класс Основные темы к уроку математике
Презентация по слайдам:
Слайд #1
Геометрия 7 класс Основные темы Автор: учитель математики Пачина Н.П. МОУ «СОШ № 59»
Слайд #2
Данная презентация предназначена для проведения обобщающего урока по курсу геометрии 7 класс. Продолжительность показа презентации зависит от степени подготовки класса: от 3 до 4 уроков. Отдельные фрагменты презентации можно использовать как при объяснении нового материала, так и при закреплении или повторении. далее
Слайд #3
Аксиомы Точки и прямые Какова бы не была прямая, существуют точки, принадлежащие этой прямой, и точки не принадлежащие ей. А В В
Слайд #4
Аксиомы точки и прямые Через любые две точки можно провести прямую, и притом только одну. А В
Слайд #5
Аксиомы точки и прямые Из трёх точек на прямой одна, и только одна, лежит между двумя другими. А В С
Слайд #6
Аксиомы Отрезки и их длины Каждый отрезок имеет определённую длину. А В АВ = 6 см
Слайд #7
Аксиомы Отрезки и их длины Длина отрезка равна сумме длин частей, на которые он разбивается любой внутренней точкой. В А С АВ+ВС=АС
Слайд #8
Аксиомы Углы и их меры Каждый угол имеет определённую градусную меру. А В С САВ=950
Слайд #9
Аксиомы Углы и их меры Мера угла равна сумме мер углов, на которые данный угол разбивается любым его внутренним лучом. А В С О АВС= АВО + ОВС
Слайд #10
Смежные углы Сумма мер смежных углов равна 1800 А В С О АВО+ ОВС=1800
Слайд #11
Вертикальные углы Вертикальные углы равны. А В С О Е ВАС= ОАЕ
Слайд #12
Параллельные прямые определение Прямые называются параллельными, если -они лежат в одной плоскости -они не пересекаются а в а в
Слайд #13
Параллельные прямые Признаки Если две прямые с поперечиной образуют равные накрест лежащие углы, то прямые параллельны 1 2 3 4 а в 2= 3 а в Если две прямые параллельны, то они с поперечиной образуют равные накрест лежащие углы а в 2= 3 Параллельные прямые Свойства
Слайд #14
Параллельные прямые Признаки Если сумма внутренних односторонних углов равна 1800 ,то прямые параллельны 1 2 3 4 а в 2+ 4=1800 а в Если сумма внутренних односторонних углов равна 1800 ,то прямые параллельны Если прямые параллельны, то сумма внутренних односторонних углов равна 1800 а в 2+ 4=1800 Параллельные прямые Свойства
Слайд #15
Треугольники Треугольник и его элементы Медиана-отрезок, соединяющий вершину треугольника с серединой противолежащей стороны. А В С О АО=ОВ
Слайд #16
Треугольники Треугольник и его элементы Биссектриса-отрезок биссектрисы угла треугольника от его вершины до противолежащей стороны. А В С О 1 2 1= 2
Слайд #17
Треугольники Треугольник и его элементы Высота- перпендикуляр, опущенный из вершины треугольника на прямую, содержащую противолежащую сторону А В С О ВО АС ВОС=900
Слайд #18
Треугольники Треугольник и его элементы Сумма углов треугольника равна 1800 А В С А + В + С = 1800
Слайд #19
Треугольники Треугольник и его элементы Угол, смежный с углом треугольника, называют внешним углом. . А В С О 1 ВСО= 1-внешний 1= А+ В Внешний угол треугольника равен сумме двух внутренних , не смежных с ним
Слайд #20
Треугольники Треугольник и его виды По углам: Остроугольный Тупоугольный Прямоугольный
Слайд #21
Треугольники Треугольник и его виды
Слайд #22
Треугольники Треугольник и его виды По сторонам разносторонний равнобедренный равносторонний
Слайд #23
Треугольники Признаки равенства Первый признак Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны. две стороны и угол между ними двум сторонам и углу между ними
Слайд #24
Треугольники Признаки равенства Второй признак Если сторона и два прилежащих к ней угла одного треугольника равны соответственно стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны. сторона и два прилежащих к ней угла стороне и двум прилежащим к ней углам
Слайд #25
Треугольники Признаки равенства Третий признак Если три стороны одного треугольника равны соответственно трём сторонам другого треугольника, то такие треугольники равны. три стороны трём сторонам
Слайд #26
Равнобедренный треугольник Определение Треугольник называется равнобедренным, если у него две стороны равны. А В С АС, СВ- боковые стороны АС=СВ АВ- основание
Слайд #27
Равнобедренный треугольник Свойства В равнобедренном треугольнике углы при основании равны, а биссектриса, проведённая к основанию, является медианой и высотой. А В С О АВС- равнобедренный А= В, СО- биссектриса, медиана и высота
Слайд #28
Равнобедренный треугольник Признаки Если в треугольнике два угла равны, то он равнобедренный. Если в треугольнике медиана является высотой, то он равнобедренный. Если в треугольнике медиана является биссектрисой, то он равнобедренный. Если в треугольнике высота является биссектрисой, то он равнобедренный
Слайд #29
Равносторонний треугольник Определение Треугольник называется равносторонним, если у него все стороны равны. А В С АС=АВ=ВС
Слайд #30
Равносторонний треугольник Свойства В равностороннем треугольнике все углы равны. В равностороннем треугольнике каждая биссектриса является медианой и высотой. В равностороннем треугольнике все три медианы равны.
Слайд #31
Равносторонний треугольник Признаки Если все углы в треугольнике равны, то он равносторонний. А В С А= В= С АВС –равносторонний АВ=ВС=АС
Слайд #32
Прямоугольный треугольник Определение Треугольник называется прямоугольным, если один из его углов прямой. А В С А=900 АС, АВ- катеты СВ- гипотенуза
Слайд #33
Прямоугольный треугольник Признаки Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого, то такие треугольники равны. катет и гипотенуза катету и гипотенузе
Слайд #34
Прямоугольный треугольник Признаки Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого, то такие треугольники равны. два катета двум катетам
Слайд #35
Прямоугольный треугольник Признаки Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого, то такие треугольники равны. катет и острый угол катету и острому углу
Слайд #36
Прямоугольный треугольник Признаки Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны. гипотенуза и острый угол гипотенузе и острому углу
Слайд #37
Прямоугольный треугольник Свойства Катет прямоугольного треугольника, лежащий против угла 300, равен половине гипотенузы. А С В А=900 В=300 АС=0,5ВС
Слайд #38
Прямоугольный треугольник Свойства В прямоугольном треугольнике сумма острых углов равна 900. А В С А=900, В+ С=900