Загадочное число ПИ
Читать

Загадочное число ПИ

Презентация на тему Загадочное число ПИ к уроку математике

Презентация по слайдам:


Слайд #1

Городское управление образования г.Полысаево Информационно-методический центр Муниципальное общеобразовательное учреждение «Средняя общеобразовательная школа № 35» Работа на городскую научно-исследовательскую конференцию «Шаг в будущее» Выполнил: Олейник Юля, ученица 10 А класса Руководитель: Третьякова Галина Валерьяновна, учитель математики, Луцык Наталья Анатольевна, учитель информатики Полысаево, 2008

Слайд #2

Исследование природы числа ПИ и выявление его роли в окружающем нас мире.

Слайд #3

ситуации возникновения числа . трансцендентность числа . некоторые способы вычисления числа . проблему квадратуры круга. Рассмотреть: 2. Провести собственный опыт исследования по вычислению числа ПИ. 3. Раскрыть загадочность числа ПИ.

Слайд #4

Длина окружности: Площадь круга

Слайд #5

«Периметр любого правильного вписанного в окружность многоугольника является приближённым значением длины окружности. Чем больше число сторон такого многоугольника, тем точнее это приближённое значение, так как многоугольник при увеличении числа сторон всё ближе и ближе «прилегает» к окружности

Слайд #6

Особое значение число имеет в курсе «Алгебры и начала анализа» в 10 классе для измерения угла в радианах, при изучении темы «Тригонометрические функции».

Слайд #7

Разгадав ребус, вы узнаете имя древнегреческого философа и математика, которому приписывают открытие важнейших теорем геометрии. Ответ: Пифагор.

Слайд #8

На этом школьная жизнь числа не заканчивается. В старших классах мы встречаемся с этим удивительным числом в курсе физики на таких темах как: 1. Движение тела по окружности: - линейная скорость; - угловая скорость, n – частота вращения 2. Механическое напряжение: - S – площадь сечения (круга) 3. Период колебания математического маятника: - коэффициент пропорциональности 5. Формула Томсона 4. Закон Кулона: - период колебания груза на пружине - период колебаний в колеблющемся контуре

Слайд #9

1. Рассмотрим множество положительных чисел. Если у них случайным образом выбрать два числа, то какова вероятность того, что выбранные числа не будут иметь общего делителя? Ответ неожидан: искомая вероятность равна:

Слайд #10

2. Когда-то немецкий математик Лейбниц (1646-1716) заинтересовался, сколько получится в пределе, если последовательно будем складывать такие числа: Оказалось, что в пределе мы получим . (Для доказательства Лейбниц пользовался приёмами высшей математики).

Слайд #11

Число участвует и в известной формуле Эйлера из которой ещё глубже выясняется природа числа . Полученные формулы для числа позволяют вычислить это число с большой точностью, не обращаясь к окружности и правильном многоугольникам, и при этом значительно легче и быстрее. 3. Аналогичный вопрос поставил перед собой Леонар Эйлер. Его интересовала «сумма чисел: ».

Слайд #12

4. Было найдено и много других формул, где неожиданно появляется число . Вот формула английского математика Джона Валлиса: 5. Удобнее для вычислений ряд, получаемый разложением при Наилучшую формулу для вычисления числа получил Дж. Мэчан, пользуясь также разложением в ряды . Он вычислил с точностью до 100 десятичных знаков. 6. Число встречается и в некоторых формулах неевклидовой геометрии, где оно, конечно, не является отношением длины окружности к её диаметру, а определяется число аналитически.

Слайд #13

Слайд #14

В Древнем Египте при вычислении площади круга для использовали значение 2. Древнеримский архитектор Витрувий принимал 3. Архимед нашёл более точное приближение для числа . Он показал, что так что

Слайд #15

Напишем по два раза три нечётных числа: 1, 1, 3, 3, 5, 5. Три последних числа сделаем числителем, а три первых – знаменателем дроби . Эта дробь позволяет вычислить с точностью до седьмого знака.

Слайд #16

в окружность с диаметром, равным единице, мысленно вписывали правильный многоугольник с большим числом сторон и вычисляли периметр этого многоугольника, привлекая «формулу удвоения». Периметр такого многоугольника и принимался равным числу . Для оценки погрешности такого приближения приходилось рассматривать также периметры правильных описанных многоугольников

Слайд #17

Можно ли, пользуясь только циркулем и линейкой, построить квадрат, площадь которого была бы в точности равна площади данного круга?

Слайд #18

Проведём в четверти единичного круга несколько линий так, чтобы отрезок bc был равен 7/8 радиуса, dg- 1/2, отрезок de был параллелен отрезку ас, a df— параллелен отрезку be. Тогда, как легко видеть, расстояние fg равно , или 0,1415929... Поскольку , отложим отрезок втрое длиннее радиуса, продолжим его на расстояние fg и получим новый отрезок, длина которого отличается от меньше чем на одну миллионную.

Слайд #19

Контур нижней части этой вазы образован дугой в окружности диаметром 10 см. Верхняя половина ограничена тремя четвертушками той же окружности. Как быстро можно назвать с точностью до последнего десятичного знака длину стороны квадрата, имеющего площадь, равную площади этой фигуры?

Слайд #20

Ответ: сторона квадрата также равна 10 см. Если пунктирные линии провести так, как показано на рисунке, то станет видно, что сегментами A, B, и C можно заполнить «лунки» A’, B’, и C’, при этом образуются два квадрата общей площадью 100 см2.

Слайд #21

На рисунке показано, как разрезать вазу всего лишь на три части так, чтобы из них можно было сложить квадрат см.

Слайд #22

PROGRAM METOD1; USES CRT; VAR X,Y,P: REAL; I,NKV,NKR:INTEGER; BEGIN CLRSCR; TEXTBACKGROUND(2); TEXTCOLOR(7); RANDOMIZE; WRITELN(' ***ВЫЧИСЛЕНИЕ пи***'); WRITELN; WRITELN (' *** МЕТОД МОНТЕ-КАРЛО ***'); WRITELN; WRITE (‘ВВЕДИТЕ КОЛИЧЕСТВО КАПЕЛЬ В КВАДРАТЕ?‘); READLN(NKV); WRITELN; NKR:=0; FOR I:=0 TO NKV DO BEGIN X:=RANDOM; Y:=RANDOM; IF X*X+Y*Y

Слайд #23

ROGRAM METOD2; USES CRT; VAR F, DX, P, X, A: REAL; I, N:INTEGER; BEGIN CLRSCR; TEXTBACKGROUND(2); TEXTCOLOR(7); WRITELN(' ***ВЫЧИСЛЕНИЕ пи***'); WRITELN; WRITELN (' *** МЕТОД ПРЯМОУГОЛЬНИКОВ ***'); WRITELN; WRITE (‘ВВЕДИТЕ КОЛИЧЕСТВО ТОЧЕК ДЕЛЕНИЯ ОТРЕЗКА? ‘); READLN(N); WRITELN; DX:=1/N; FOR I:=0 TO N-1 DO BEGIN F:=SQRT(1-SQR(X)); X:=X+DX; A:=A+F; END; P:=4*DX*A; WRITELN(‘ЗНАЧЕНИЕ ЧИСЛА Pi РАВНО: ‘,P:7:6); READLN; END. Результат

Слайд #24

ROGRAM METOD3; USES CRT; VAR S, P, F: REAL; I, N:INTEGER; BEGIN CLRSCR; TEXTBACKGROUND(2); TEXTCOLOR(7); WRITELN(' ***ВЫЧИСЛЕНИЕ пи***'); WRITELN; WRITELN (' *** МЕТОД ПРЯМОУГОЛЬНИКОВ ***'); WRITELN; WRITE (‘ВВЕДИТЕ КОЛИЧЕСТВО ЧЛЕНОВ РЯДА ТЕЙЛОРА? ‘); READLN(N); WRITELN; S:=1; FOR I:=1 TO N DO BEGIN F:=1/(2*I+1); IF I MOD 2=0 THEN F:=F ELSE F:=-F; S:=S+F; END; P:=4*S; WRITELN(‘ЗНАЧЕНИЕ ЧИСЛА Pi РАВНО: ‘,P:7:6); READLN; END. Результат

Слайд #25

Свои данные исследования я занесла в следующую таблицу: Вывод: во всех методах вычисления - чем больше значение N (либо – количество капель в квадрате, либо – количество членов ряда Тейлора, либо – количество точек деления отрезка), тем более точнее вычисляется приближённое значение числа . Из всех трёх методов более точнее работает метод Тейлора Значение N 10 25 50 100 200 500 1000 2000 5000 10000 Метод Тейлора  3,232316  3,103145  3,161199  3,151493  3,146568  3,143589  3,142592  3,142092  3,141793  3,141693 Метод Монте-Карло  3,200000  3,520000  3,360000  3,280000  3,340000  3,232000  3,100000 3,190000 3,139200 3,135600 Метод Прямоугольников 3,304518 3,212196 3,178269 3,160417 3,151177 3,145487 3,143555 3,142580 3,141989 3,141791

Слайд #26

Я взяла обыкновенную швейную иголку и лист бумаги. На листе провела несколько параллельных прямых так, чтобы расстояние между ними были равны и совпадали с длиной иголки. Чертёж должен быть достаточно большим, чтобы случайно брошенная игла не упала за его пределами. На этот лист я бросала сверху иглу и подсчитывала, сколько раз при данном числе бросаний игла пересечёт одну из параллелей (безразлично какую).

Слайд #27

Результат отношения Свои результаты я занесла в таблицу: Вывод: оказалось, что при большем числе бросаний (n) дробь и это равенство будет тем точнее, чем больше будет число бросаний. № опыта Число бросания иглы (n) Количество пересечений линий иглой (m) 1 20 15 0,75 2 30 22 0,733333 3 40 27 0,675 4 50 33 0,66 5 60 45 0,75 6 70 51 0,72857 7 80 53 0,6625 8 90 58 0,644444 9 100 67 0,67 10 120 77 0,641667

Слайд #28

Альберт Эйнштейн

Слайд #29

«Почему, зная о нежелании числа ПИ быть опознанным в качестве разумного, я не побоялся прийти сюда и вам всё это рассказать? Да потому, что для меня это и был единственный способ выжить. Теперь-то ПИ придётся или убить всех вас, или смириться с тем, что его тайна раскрыта. Будем надеяться, что Оно поступит разумно»

Слайд #30