МЫШЕЧНАЯ ДЕЯТЕЛЬНОСТЬ
Презентация на тему МЫШЕЧНАЯ ДЕЯТЕЛЬНОСТЬ к уроку по биологии
Презентация по слайдам:
Слайд #1
[ МЫШЕЧНАЯ ДЕЯТЕЛЬНОСТЬ ] Студентки 4 курса Датиевой И.А.
Слайд #2
Основные вопросы Мышечное волокно. Типология мышечных волокон Онтогенез мышечных волокон: эмбриональный период, постнатальное развитие Динамика роста скелетных мышц Работа мышц : виды мышечной работы, зоны мощности, экономичность мышечной работы Вегетативные системы. Реакция вегетативных систем на нагрузку. Поддержание гомеостаза при мышечной нагрузке Возрастные этапы становления энергетики мышечной деятельности
Слайд #3
Рис. 1. Возрастные изменения массы скелетных мышц Скелетные мышцы наряду с нервными структурами относятся к возбудимым тканям, составляющие их клетки — наиболее сложно устроенные в организме человека. С этим связано то обстоятельство, что мышечная ткань проходит очень долгий и многоступенчатый путь возрастного развития (рис. 1), претерпевая на этом пути несколько кардинальных перестроек.
Слайд #4
Рис.2 Ультраструктура мышечной ткани человека: А — мальчик 11 лет; Б — взрослый мужчина Под микроскопом на продольном срезе мышечного волокна видна поперечная исчерченность, которая обусловлена тем, что его внутренние структуры периодически (через каждые 2–2,5 мкм) многократно повторяются (рис. 2).
Слайд #5
Волокна I типа содержат «медленный» миозин. Это сравнительно тонкие волокна с большим содержанием митохондрий и миоглобина (аналог гемоглобина, содержащийся в самих мышечных волокнах), поэтому они имеют красный цвет и их называют еще «красные». В этих волокнах преобладает аэробная энергетика, наиболее экономичная, но зависящая от доставки кислорода. Эти волокна малоутомляемы и обеспечивают выносливость мышц. Волокна II типа содержат «быстрый» миозин. Они примерно в 2 раза толще волокон I типа. Этот тип подразделяется на подтипы IIA и IIB. Волокна типа IIB содержат много АТФ и креатинфосфата в цитоплазме, но мало митохондрий и миоглобина, поэтому их называют «белые». Их энергетика базируется главным образом на анаэробных гликолитических процессах и в гораздо меньшей степени зависит от доставки кислорода. Однако эти волокна быстро утомляются при нагрузке. Именно они определяют важнейшее качество — силу.
Слайд #6
Слайд #7
Рис. 3. Возрастные изменения волоконного состава скелетных мышц (m. quadriceps femori) 1 — волокна типа I; 2 — волокна типа IIA; 3 — волокна типа IIB К моменту рождения количество волокон, включившихся в первый этап дифференциации, составляет в среднем 43 %
Слайд #8
Рис. 4. Скорость роста массы тела и мышц конечностей у мальчиков школьного возраста
Слайд #9
Рис. 5. Возрастные изменения функционального диапазона скелетных мышц и зон мощности
Слайд #10
Слайд #11
Следует иметь ввиду, что КПД системы есть произведение частных КПД всех элементов системы. КПД организма при мышечной работе представляет собой произведение следующих частных КПД: КПД мышечного сокращения — 80 %; КПД ресинтеза макроэргов — 90 %; КПД транспортных систем организма — 60 %; КПД биомеханических структур организма — 80 %.
Слайд #12
Рис. 6. Возрастные и половые различия зависимости частоты пульса от уровня нагрузки
Слайд #13
Рис. 7. Схема графического определения PWC170 f0 — пульс при первой нагрузке; fN — пульс при второй нагрузке; О и N — мощность первой и второй нагрузки. Стрелки указывают величину PWC170 на шкале мощности
Слайд #14
Рис.8. Примеры нелинейных зависимостей параметров энергетического обмена от мощности мышечной работы La — концентрация лактата в крови; QO2 — скорость потребления кислорода
Слайд #15
В школьном возрасте ребенок проходит еще целый ряд этапов, только на последнем из них достигая «взрослого» уровня регуляции, функциональных возможностей и энергетики скелетных мышц:
Слайд #16
1-й этап — возраст от 7 до 9 лет — период поступательного развития всех механизмов энергетического обеспечения с преимуществом аэробных систем;
Слайд #17
2-й этап — возраст 9-10 лет — период «расцвета» аэробных возможностей, роль анаэробных механизмов мала;
Слайд #18
3-й этап — период от 10 до 12–13 лет — отсутствие увеличения аэробных возможностей, умеренное увеличение анаэробных возможностей, развитие фосфагенного и анаэробно-гликолитического механизмов протекает синхронно;
Слайд #19
4-й этап — возраст от 13 до 14 лет — существенное увеличение аэробных возможностей, торможение развития анаэробно-гликолитического механизма энергообеспечения; фосфагенный механизм развивается пропорционально увеличению массы тела;
Слайд #20
5-й этап — возраст 14–15 лет — прекращение увеличения аэробных возможностей, резкое увеличение емкости анаэробно-гликолитического процесса, развитие фосфагенного механизма, по-прежнему, пропорционально увеличению массы тела;
Слайд #21
6-й этап — период от 15 до 17 лет — аэробные возможности растут пропорционально массе тела, продолжают быстро рости анаэробно-гликолитические возможности, значительно ускоряется развитие механизмов фосфагенной энергопродукции, завершается формирование дефинитивной структуры энергообеспечения мышечной деятельности.
Слайд #22
Слайд #23
Вопросы 1. Расскажите о мышечных волокнах и их онтогенезе. 2. Какова динамика роста мышц? 3. Расскажите о видах мышечной работы. Что такое зоны мощности? 4. Перечислите функции вегетативных систем. Какова их роль в обеспечении мышечной работы? 5. Какие этапы становления энергетики мышечной деятельности вы знаете?