Сила Архимеда. Плавание тел
Читать

Сила Архимеда. Плавание тел

Презентация на тему Сила Архимеда. Плавание тел к уроку по физике

Презентация по слайдам:


Слайд #1

Тема урока Сила Архимеда Плавание тел

Слайд #2

Какие силы действуют на тело, погружённое в жидкость? h1 h2 Fт S F На тело в жидкости действуют сила тяжести И сила гидростатического давления со стороны жидкости Давления жидкости на боковые стенки тела равны ( закон Паскаля) Рассчитаем давления жидкости на верхнюю и нижнюю грани

Слайд #3

Рассчитаем разность сил, действующих на верхнюю и нижнюю поверхности тела F1 F2 - плотность жидкости - объём тела

Слайд #4

Сила Архимеда Fа На тело, погружённое в жидкость, действует выталкивающая сила, направленная вверх и равная по модулю весу жидкости, вытесненной телом

Слайд #5

Опыт с ведёрком Архимеда Вес тела в воздухе Вес тела в жидкости К весу тела в воздухе добавился вес вытесненной телом жидкости Тело в жидкости теряет в весе столько, сколько весит вытесненная телом жидкость

Слайд #6

На тело в жидкости или газе действуют сила тяжести и сила Архимеда Fa > Fт – тело всплывает Fa = Fт -тело плавает в любом месте жидкости Fa < Fт – тело тонет Fa Fт Fт Fт Fa Fa

Слайд #7

В настоящее время строятся речные и морские, пассажирские и транспортные корабли из материалов, плотность которых значительно повышает плотность пресной воды Fарх Fтяж

Слайд #8

Чтобы судно могло плавать устойчиво и безопасно, его корпус должен погружаться в воду лишь до определенной глубины Допускаемая глубина погружения судна в воду – осадка, отмечается на его корпусе красной линией – ватерлинией. Допускаемая глубина погружения судна в воду – осадка, отмечается на его корпусе красной линией – ватерлинией.

Слайд #9

Когда судно погружается до ватерлинии, оно вытесняет такое количество воды, что ее вес соответствует весу судна со всем грузом и называется водоизмещением. Pcудна = Pводы

Слайд #10

Воздухоплавание – пример применения силы Архимеда

Слайд #11

Человек стремиться создать средства для плавания в воздушном океане. Для этого он конструировал и строил летательные аппараты : Воздушные шары Аэростаты Дирижабли

Слайд #12

Воздушные шары. Оболочка для маленьких воздушных шаров делается из резины, бумаги или из плотной шелковой или хлопчатобумажной ткани. Объем таких шаров от нескольких сот до 3-4 тыс. куб. метр. В верхней части устраивается клапан для выпуска газа, открывающийся при помощи веревки. К нижней части шара обычно прикреплен придаток в виде трубы с клапаном для выхода газа при расширении его. Корзина делается из ивовых прутьев или камыша. Необходимой принадлежностью воздушного шара служит якорь с канатом, прикрепленным к подвесному обручу. Воздушный шар наполняется газом не сполна, так как объем газа в верхних слоях атмосферы (под меньшим давлением) сильно увеличивается. Скорость подъема определяют по барометру.

Слайд #13

Аэроста т — летательный аппарат легче воздуха. Подъёмная сила аэростата создаётся заключённым в оболочке газом (или нагретым воздухом) с плотностью меньшей, чем плотность окружающего воздуха. Аэростаты впервые позволили человеку подняться в воздух, а позднее и достичь стратосферы. Одна из основных областей применения — подъём на необходимую высоту систем видеонаблюдения, связи, получения метеоданных. Во время Второй мировой войны аэростаты широко применялись для защиты городов, промышленных районов, военно-морских баз и других объектов от нападения с воздуха.

Слайд #14

Аэростат –устройство, применяемое в народном хозяйстве и военном деле

Слайд #15

Дирижа бль (управляемый) — летательный аппарат легче воздуха, аэростат с двигателем, благодаря которому дирижабль может двигаться независимо от направления воздушных потоков. Самые первые дирижабли приводились в движение паровым двигателем или мускульной силой, в 80-х годах XIX века были применены электродвигатели. Набор высоты и снижение производят, наклоняя дирижабль рулями высоты — двигатели тогда тянут его вверх или вниз. Сбрасывание балласта и выпуск газа в полёте производят редко.

Слайд #16

Домашнее задание § 5.10, 5.11,5.12. №1 (5.10),№1(5.11)