Дифракция света
Презентация на тему Дифракция света к уроку по физике
Презентация по слайдам:
Слайд #1
Дифракция света
Слайд #2
Характерным проявлением волновых свойств света является дифракция света — отклонение от прямолинейного распространения на резких неоднородностях среды
Слайд #3
Дифракция была открыта Франческо Гримальди в конце XVII в. Объяснение явления дифракции света дано Томасом Юнгом и Огюстом Френелем, которые не только дали описание экспериментов по наблюдению явлений интерференции и дифракции света, но и объяснили свойство прямолинейности распространения света с позиций волновой теории
Слайд #4
Принцип Гюйгенса — Френеля Для вывода законов отражения и преломления мы использовали принцип Гюйгенса. Френель дополнил его формулировку для объяснения явления дифракции Определите, какое дополнение ввел Френель?
Слайд #5
Принцип Гюйгенса: каждая точка волновой поверхности является источником вторичных сферических волн
Слайд #6
Принцип Гюйгенса-Френеля: каждая точка волновой поверхности является источником вторичных сферических волн, которые интерферируют между собой
Слайд #7
Задание: Попробуйте предположить как будет выглядеть дифракционная картина?
Слайд #8
Дифракционная картина
Слайд #9
Задание: Будет ли вид дифракционной картины зависеть от длины волны (цвета)? Как будет выглядеть дифракционная картина в белом свете?
Слайд #10
Задание: Попробуйте предложить идею опыта по наблюдению дифракции
Слайд #11
Построение дифракционной картины от круглого отверстия и круглого непрозрачного экрана
Слайд #12
Дифракция от различных препятствий: а) от тонкой проволочки; б) от круглого отверстия; в) от круглого непрозрачного экрана.
Слайд #13
Препятствие – круглое отверстие R=3.9
Слайд #14
Препятствие – круглое отверстие R=3.3
Слайд #15
Препятствие – игла d=2.3
Слайд #16
Препятствие – игла d=2.3
Слайд #17
Препятствие – игла d=2.3
Слайд #18
Препятствия
Слайд #19
Зоны Френеля Для того чтобы найти амплитуду световой волны от точечного монохроматического источника света А в произвольной точке О изотропной среды, надо источник света окружить сферой радиусом r=ct
Слайд #20
Зоны Френеля Интерференция волны от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке P, т. е. необходимо произвести сложение когерентных колебаний от всех вторичных источников на волновой поверхности
Слайд #21
Зоны Френеля Так как расстояния от них до точки О различны, то колебания будут приходить в различных фазах. Наименьшее расстояние от точки О до волновой поверхности В равно r0
Слайд #22
Зоны Френеля Первая зона Френеля ограничивается точками волновой поверхности, расстояния от которых до точки О равны: где — длина световой волны
Слайд #23
Зоны Френеля Вторая зона: Аналогично определяются границы других зон
Слайд #24
Зоны Френеля
Слайд #25
Дифракционные картины от одного препятствия с разным числом открытых зон
Слайд #26
Прибор
Слайд #27
Интерференционные экстремумы Если разность хода от двух соседних зон равна половине длины волны, то колебания от них приходят в точку О в противоположных фазах и наблюдается интерференционный минимум, если разность хода равна длине волны, то наблюдается интерференционный максимум
Слайд #28
Темные и светлые пятна Таким образом, если на препятствии укладывается целое число длин волн, то они гасят друг друга и в данной точке наблюдается минимум (темное пятно). Если нечетное число полуволн, то наблюдается максимум (светлое пятно)
Слайд #29
Зонные пластинки На этом принципе основаны т.н. зонные пластинки
Слайд #30
Зонные пластинки
Слайд #31
Получение изображения с помощью зонной пластинки
Слайд #32
Условия наблюдения дифракции Дифракция происходит на предметах любых размеров, а не только соизмеримых с длиной волны
Слайд #33
Условия наблюдения дифракции Трудности наблюдения заключаются в том, что вследствие малости длины световой волны интерференционные максимумы располагаются очень близко друг к другу, а их интенсивность быстро убывает
Слайд #34
Границы применимости геометрической оптики Дифракция наблюдается хорошо на расстоянии Если , то дифракция невидна и получается резкая тень (d - диаметр экрана). Эти соотношения определяют границы применимости геометрической оптики
Слайд #35
Границы применимости геометрической оптики Если наблюдение ведется на расстоянии , где d—размер предмета, то начинают проявляться волновые свойства света
Слайд #36
Соотношения длины волны и размера препятствия На рис. показана примерная зависимость результатов опыта по распространению волн в зависимости от соотношения размеров препятствия и длины волны.
Слайд #37
Интерференционные картины от разных точек предмета перекрываются, и изображение смазывается, поэтому прибор не выделяет отдельные детали предмета. Дифракция устанавливает предел разрешающей способности любого оптического прибора
Слайд #38
Разрешающая способность человеческого глаза приблизительно равна одной угловой минуте: где D — диаметр зрачка; телескопа =0,02''; у микроскопа увеличение не более 2.103 раз. Можно видеть предметы, размеры которых соизмеримы с длиной световой волны
Слайд #39
Дифракционная решетка Дифракционные решетки, представляющие собой точную систему штрихов некоторого профиля, нанесенную на плоскую или вогнутую оптическую поверхность, применяются в спектральном приборостроении, лазерах, метрологических мерах малой длины и т.д
Слайд #40
Дифракционная решетка
Слайд #41
Дифракционная решетка
Слайд #42
Дифракционная решетка Величина d = a + b называется постоянной (периодом) дифракционной решетки, где а — ширина щели; b — ширина непрозрачной части
Слайд #43
Дифракционная решетка Угол - угол отклонения световых волн вследствие дифракции. Наша задача - определить, что будет наблюдаться в произвольном направлении - максимум или минимум
Слайд #44
Дифракционная решетка Оптическая разность хода Из условия максимума интерференции получим:
Слайд #45
Дифракционная решетка Следовательно: - формула дифракционной решетки. Величина k — порядок дифракционного максимума ( равен 0, 1, 2 и т.д.)
Слайд #46
Определение с помощью дифракционной решетки
Слайд #47
Прибор
Слайд #48
Гримальди Франческо 2.IV.1618 - 28.XII.1663 Итальянский ученый. С 1651 года - священник. Открыл дифракцию света, систематически ее изучал и сформулировал некоторые правила. Описал солнечный спектр, полученный с помощью призмы. В 1662 г. определил величину поверхности Земли.
Слайд #49
Френель Огюст Жан (10.V.1788 - 14.VII.1827) Французский физик. Научные работы посвящены физической оптике. Дополнил известный принцип Гюйгенса, введя так называемые зоны Френеля (принцип Гюйгенса - Френеля). Разработал в 1818 году теорию дифракции света
Слайд #50
Юнг Томас 13.IV.1773-10.V.1829 Английский ученый. Полиглот. Научился читать в 2 года. Объяснил аккомодацию глаза, обнаружил интерференцию звука, объяснил интерференцию света, и ввел этот термин. Измерил длины волн световых лучей. Исследовал деформацию
Слайд #51
Араго Доменик Франсуа (26.II.1786-2.X.1853) Французский физик и политический деятель. Автор многих открытий по оптике и электромагнетизму: хроматическую поляризацию света, вращение плоскости поляризации, намагничивание железных опилок вблизи проводника с током. Установил связь полярных сияний с магнитными бурями. По его указаниями А.Физо и У.Фуко измерили скорость света, а У.Леверье открыл планету Нептун
Слайд #52
Фраунгофер Йозеф (6.III.1787- 7.VI.1826) Немецкий физик. Научные работы относятся к физической оптике. Внёс существенный вклад в исследование дисперсии и создание ахроматических линз. Фраунгофер изучал дифракцию в параллельных лучах (так называемая дифракция Фраунгофера).Сначала от одной щели, а потом от многих. Большой заслугой учёного является использование(с 1821 года) дифракционных решеток для исследования спектров (некоторые исследователи считают его даже изобретателем первой дифракционной решетки)
Слайд #53
Пуассон Семион Дени (21.VI.1781 - 25.IV.1840) Французский механик, математик, физик, член Парижской академии наук (с 1812 года). Физические исследования относятся к магнетизму, капиллярности, теории упругости, гидромеханике, теории колебаний, теории света. Член Петербургской академии наук (с 1826 года)
Слайд #54
КОНЕЦ