Атомная энергетика и ее экологические проблемы
Презентация на тему Атомная энергетика и ее экологические проблемы к уроку по физике
Презентация по слайдам:
Слайд #1
Урок по теме: «Атомная энергетика и ее экологические проблемы» Учитель физики – информатики ГБОУ АО НПО ПУ-26 Гофман Татьяна Петровна
Слайд #2
Атомная энергетика и ее экологические проблемы Урок , кроме зрительной выразительности , насыщен эмоциональным эффектом , связанным либо с прослушиванием музыкального фрагмента , либо поэтическим моментом. Непосредственное участие принимают сами учащиеся , выступая с сообщениями , докладами, чтением стихов .
Слайд #3
Цели: На основе многочисленных достоверных фактов анализировать и привести выводы по следующим вопросам: Существует ли опасность мирного атома? Опасна ли атомная энергетика? Загрязнение окружающей среды АЭС Последствия Чернобыльской катастрофы
Слайд #4
Ядерная энергетика и её экологические проблемы И твердит Природы голос: В вашей власти, в вашей власти, Чтобы все не раскололось На бессмысленные части!
Слайд #5
Атомные электростанции – третий “кит” в системе современной мировой энергетики. Техника АЭС, бесспорно, является крупным достижением НТП. В 1954 г. начала работать первая в мире атомная станция в г. Обнинске История овладения атомной энергией - от первых опытных экспериментов - насчитывает около 70 лет, когда в 1939г. была открыта реакция деления урана. С этого момента начинается история атомной энергетики.
Слайд #6
С чего все начиналось?! В 30-е годы нашего столетия известный ученый И.В. Курчатов работал по вопросам атомной техники в интересах народного хозяйства страны. В 1946 г. в России был сооружен и запущен первый на Европейско-Азиатском континенте ядерный реактор. Создается уранодобывающая промышленность. Организованное производство ядерного горючего – урана-235 и плутония-239, налажен выпуск радиоактивных изотопов. И.В.Курчатов
Слайд #7
АЭС
Слайд #8
Дата ввода первых мощностей АЭС по странам Дата ввода первых мощностей Страна 1954 СССР 1956 Великобритания 1957 США 1963 Италия 1965 Франция 1966 ФРГ, Япония, ГДР 1967 Канада 1968 Испания, Нидерланды 1969 Швейцария, Индия 1971 Швеция, Пакистан 1974 Бельгия, Болгария, Аргентина 1977 Финляндия, Юж.Корея, о.Тайвань 1979 Чехословакия
Слайд #9
В России имеется 10 атомных электростанций (АЭС), и практически все они расположены в густонаселенной европейской части страны. В 30-километровой зоне этих АЭС проживает более 4 млн. человек. Балаковская АЭС Белоярская АЭС Билибинская АЭС Калининская АЭС (Тверская область, г.Удомля) Кольская АЭС Курская АЭС Ленинградская АЭС Нововоронежская АЭС Ростовская (Волгодонская) АЭС Смоленская АЭС
Слайд #10
Наиболее мощные АЭС в мире Название АЭС Страна Мощность, МВт Количество блоков «Фукусима» (Fukushima) Япония 8815 10 «Брус» (Bruce) Канада 6818 8 «Гравелин» (Gravelines) Франция 5460 6 «Палюэль» (Paluel) Франция 5320 4 «Катном» (Cattenom) Франция 5200 4 «Запорожская» Украина 4765 5 «Бюже» (Bugey) Франция 4140 5 «Пикеринг» (Pickering) Канада 4116 8 «Пало Верде» (Palo Verde) США 3810 3 «Курская» Россия 3700 4 «Ленинградская» Россия 3700 4 «Трикастен» (Tricastin) Франция 3660 4
Слайд #11
Всего с момента начала эксплуатации АЭС в 14 странах мира произошло более 150 инцидентов и аварий различной степени сложности. Некоторые из них: В 1957г – в Уиндскейле (Англия) В1959г – в Санта-Сюзанне (США) В1961г – В Айдахо-Фолсе (США) В1979г – в Три-Майл-Айленд (США) 1986 год –Чернобыльская катастрофа.
Слайд #12
Слайд #13
Слайд #14
Слайд #15
Слайд #16
Слайд #17
Слайд #18
Виды радиационных излучений: Виды излучений Природа излучения Проникающая способность Ионизирующая способность Гамма Электромагнитная, рентгеновская Большая, очень высокая Малозначительная, ниже, чем у альфа частиц Альфа Поток ядер атома гелия Слабая Высокая Бета Поток электронов Высокая, выше чем у альфа Значительно ниже, чем у альфа Нейтронное Поток нейтронных частиц Очень высокая Высокая
Слайд #19
Последствия Чернобыльской катастрофы
Слайд #20
При радиационном уровне свыше 15Ки на квадратный километр жизнь человека невозможна. Территория заповедника заражена от 15 до 1200 Ки/км2. Жизнь сюда не вернется ни через 100, ни через 500, а на отдельных участках заповедника ни через – 1000 лет
Слайд #21
Слайд #22
Слайд #23
Слайд #24
Коэффициент чувствительности ткани при эквивалентной дозе облучения Ткани Эквивалентная доза% Костная ткань 0,03 Щитовидная железа 0,03 Красный костный мозг 0,12 Легкие 0,12 Молочная железа 0,15 Яичники, семенники 0,25 Другие ткани 0,3 Организм в целом 1
Слайд #25
Слайд #26
Слайд #27
Слайд #28
Слайд #29
Слайд #30
Слайд #31
Генетические последствия радиации
Слайд #32
Слайд #33
Последствия радиации: Мутации Раковые заболевания (щитовидной железы, лейкоз, молочной железы, легкого, желудка, кишечника) Наследственные нарушения Стерильность яичников у женщин, Слабоумие
Слайд #34
Чем сегодня опасен Чернобыль? Главные задачи: Создать надежную защиту над четвертым энергоблоком; Поддерживать в порядке старые могильники; Создать новые временные кладбища техники; Продолжить дезактивацию и «отмывание» территории и всех объектов от радиации
Слайд #35
Радиоактивные отходы: современные проблемы и один из проектов их решения.
Слайд #36
АЭС
Слайд #37
Слайд #38
Атомный ледокол «Ленин»
Слайд #39
Однако опасность ядерной энергетики лежит не только в сфере аварий и катастроф. Даже без них около 250 радиоактивных изотопов попадают в окружающую среду в результате работы ядерных реакторов. Среди них: Криптон-85. сейчас количество криптона-85 в атмосфере в миллионы раз выше, чем до начала атомной эры. Этот газ в атмосфере ведет себя как тепличный газ. Тритий или радиоактивный водород. Загрязнение грунтовых вод происходит практически вокруг всех АЭС. Углерод-14. Плутоний. На Земле было не более 50 кг этого сверх токсичного элемента до начала его производства человеком в 1941 году.
Слайд #40
С техникой XX и начала XXI века нужно быть на Вы. Проблемы нравственности и ответственности перед Людьми, Миром, и Жизнью за научно- технические творения и связанные с ними решения приобретают для деятелей науки и техники, руководителей всех рангов этих отраслей и государства первостепенное значение. Ныне, каждый должен отчетливо понимать опасность, которая исходит от техники при бездумном, неграмотном или безнравственном отношении с нею.
Слайд #41
Экологически чистые электростанции
Слайд #42
Слайд #43
ВЕТРОВАЯ ЭЛЕКТРОСТАНЦИЯ ВЕТРОЭНЕРГЕТИКА - отрасль энергетики, связанная с разработкой методов и средств для преобразования энергии ветра в механическую, тепловую или электрическую энергию. Ветер — возобновляемый источник энергии. Ветровая энергия может быть использована практически повсеместно; наиболее перспективно применение ветроэнергетических установок в сельском хозяйстве.
Слайд #44
Слайд #45
ГЕОТЕРМАЛЬНАЯ ЭЛЕКТРОСТАНЦИЯ ГЕОТЕРМАЛЬНАЯ ЭЛЕКТРОСТАНЦИЯ - теплоэлектростанция, преобразующая внутреннее тепло Земли (энергию горячих пароводяных источников) в электрическую энергию. В России 1-я геотермальная электростанция (Паужетская) мощностью 5 МВт пущена в 1966 на Камчатке; к 1980 ее мощность доведена до 11 МВт. Геотермальные электростанции имеются в США, Новой Зеландии, Италии, Исландии, Японии.
Слайд #46
Слайд #47
СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ СОЛНЕЧНАЯ ЭЛЕКТРОСТАНЦИЯ, для выработки электроэнергии использует энергию солнечной радиации. Различают термодинамические солнечные электростанции и фотоэлектрические станции. Непосредственно преобразующие солнечную энергию в электрическую Электрическая мощность действующих (1995) термодинамических солнечных электростанций св. 30 МВт, фотоэлектрических станций — св. 10 МВт.
Слайд #48
ПРИЛИВНАЯ ЭЛЕКТРОСТАНЦИЯ ПРИЛИВНАЯ ЭЛЕКТРОСТАНЦИЯ (ПЭС), преобразует энергию морских приливов в электрическую. Действующие ПЭС — в эстуарии р. Ранс во Франции, в губе Кислой на Баренцевом м. в Российской Федерации, близ Шанхая в Китае и др.
Слайд #49
Литература: 1) Учебник «Физика-11» Г.Я.Мякишев, Б.Б.Буховцев 2) http://class-fizika.narod.ru/vid.htm 3) http://ntesla.at.ua/publ/3-1-0-19 4) http://ru.wikipedia.org/wiki/ 5)http://images.yandex.ru/yandsearch